
Orthogonalization of the  projected states and  isofactors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 2687

(http://iopscience.iop.org/0305-4470/29/11/009)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 03:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 2687–2704. Printed in the UK

Orthogonalization of the SU(n) ⊃ SO(n) projected states
and SU(3)⊃ U(2) isofactors

Sigitas Alǐsauskas
Institute of Theoretical Physics and Astronomy, Goštauto 12, Vilnius 2600, Lithuania

Received 13 November 1995

Abstract. The explicit direct and inverse orthogonalization coefficients (OCs) are derived for
the projected basis states of the two parametric covariant irreducible representations of SU(n) ⊃
SO(n) (including Elliott’sn = 3 case) and SU(4)⊃ SU(2)×SU(2) (Draayer), with the alternative
choices of the Gram–Schmidt processes, began, respectively, from the lowest (Vergados) or
highest absolute value of the intrinsic parameterK. The different direct and inverse OCs (the
latter equivalent to the definite boundary SU(n) ⊃ SO(n) isofactors, or the boundary resubducing
coefficients) are found to be connected by the definite analytical continuation–contraction
procedures with mutually related OCs of the biorthogonal SU(3)× SU(3) ⊃ SU(3) states
and the boundary orthonormal pseudocanonical and paracanonical isofactors of SU(3)⊃ U(2).
The orthogonalization coefficients considered are presented as definite algebraic-polynomial
structures under the square root, with the linear factors and numerator–denominator polynomials
in terms of the partition-dependent functions of Biedenharn and Louck,Aλ

(
a,b,d,e

c

)
.

1. Introduction

The non-canonical chains of subgroups, such as SU(n) ⊃ SO(n) and, in particular, the
SU(3) ⊃ SO(3) and SU(4)⊃ SU(2) × SU(2) cases, have found many applications in
physics and, especially, in nuclear theory. Serious mathematical problems are presented by
the appearance of the repeating irreducible representations (irreps) of subgroups for such
restrictions, together with the diversity of non-orthogonal analytical versions of the basis
states, with the biorthogonal bases included. In a series of previous papers [1, 2], explicit
analytical expressions have been proposed for the orthogonalization coefficients of the
different versions of the projected (Elliott [3], Draayer [4], see also [5–9]), polynomial [6–9]
and their dual (i.e. biorthogonal [7–9]) bases with single-dimensional missing (multiplicity)
labels, including the cases of the two-parametric covariant and mixed tensor irreps.

When Louck and co-workers [10, 11] proposed anab initio construction of the
ambiguity-free and conjugation-invariant orthogonal basis states for SU(3)↓ SO(3)
(which, however, are not related with the states of any basis, considered in [1, 2]),
Ali šauskas [1] presented explicit algebraic-polynomial expressions for the direct and inverse
orthogonalization coefficients (OCs) of the projected basis states of SU(n) ⊃ SO(n) in the
case of the two-parametric irreps. These OCs correspond to the Gram–Schmidt processes,
began from the maximal value of the intrinsic projection type parameterK or k, and
are expressed in terms of the numerator and denominator polynomials, related with the
Aλ

(
a,b,d,e

c

)
functions of Biedenharn and Louck [12–14]. Otherwise, these OCs are related

by the definite analytical continuation procedure to the OCs of the SU(3)⊃ U(2) isoscalar
factors, which transform the biorthogonal systems [15] of SU(3)⊃ U(2) isofactors into the
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orthonormal isofactors of the paracanonical [16] labelling scheme. Note, that the Gram–
Schmidt processes began from the maximal values of the multiplicity label were preferred in
[1] and [16], since the linearly dependent states of the overcomplete non-orthogonal bases in
the both cases appear naturally from below, in accordance with the intermediate expansion
technique [6–9, 15].

However, an orthogonal SU(3)⊃ SO(3) basis, derived by a Gram–Schmidt process
began from the lowest absolute value of the parameterK (for the multiplicity 6 2 see
Vergados [17], cf Tolstoy [18]) is more convenient and significant from the physicists point
of view, since series of states with fixedK and increasingL > K appear naturally in the
nuclear theory. The main purpose of this paper is the explicit analytical orthogonalization
of the projected basis states of the two parametric covariant tensor irreps of the chain
SU(n) ⊃SO(n), began from the lowest absolute value of the intrinsic multiplicity label.

Investigations of the polynomial structure [8,19] of the overlaps of the projected states
(which were derived by means the intermediate expansion technique [6–8], as well as the
overlap structure of their dual basis states [19], lead us to the conclusion that the OCs in this
case are related to the OCs of the SU(3)⊃ U(2) isofactors, transforming the biorthogonal
systems [15] into orthonormal isofactors of the pseudocanonical [15] labelling scheme. In
general, the isofactors of this latter scheme are less convenient (less symmetric) than the
isofactors of the paracanonical scheme. In these both cases the Gram–Schmidt processes
are began from the opposite ends. Otherwise, the pseudocanonical isofactors (after some
permutation of their parameters) are equivalent [15] to the U(2)-reduced matrix elements
of the SU(3) tensor operators with the null space inclusion property (cf [20]), together
with the one-to-one correspondence between their multiplicity labels and the Gelfand–
Weyl–Biedenharn pattern [13, 20] of the canonical SU(3) tensor operators. (However, the
conclusion of theorem 1.2 of [20] about the isofactors of SU(3) for definite shifts of the
SU(2) irrep parameters being equal to 0 is not valid for pseudocanonical isofactors). In
their turn, the OCs of the paracanonical and pseudocanonical labelling schemes are also
found to be mutually connected by an analytical continuation after substitution of some
irrep parameters, equivalent to the hook permutation.

The direct proof of the explicit orthogonalization of the projected SU(n) ⊃ SO(n) basis
into the Vergados version (as well as the orthogonalization of the biorthogonal SU(3)⊃ U(2)
isofactors into the pseudocanonical ones) is very cumbersome, in much the same way as
the derivation and proof of the explicit denominator function [13, 20] or OCs presented in
[1] and [15]. At first some OCs may be written straightforwardly from the preliminary
rearranged expressions of the overlap functions for the initial and final values of the
multiplicity label of the orthonormal basis states. In such a way the dependence of the
most general OCs on the label of the non-orthogonal states in the linear numerator and
denominator factors under the square root sign may also be established. Furthermore,
we should examine the polynomial structure and symmetries of the Gram determinants,
expanding them in terms of the overlap functions and decomposing in accordance with the
null space (ordered vanishing) properties of the OCs. This way leads to expressions for
the OCs in terms of the linear numerator and denominator factors under the square root
sign and the numerator and denominator polynomials, in which the total degrees in the free
parameters are fixed—restricted from above by the initial construction and from below by
the distribution of roots of these polynomials (truncated [1, 16] weight space of zeros [20]),
also correlated with the null space properties.

Therefore, in order to avoid a lot of trouble, it was expedient to reconsider in section 2
the structure of the boundary paracanonical SU(3) isofactors and their OCs and also to
present the explicit OCs for the pseudocanonical labelling scheme, before presenting in
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section 3 the main result of this paper—the orthogonalization coefficients for the projected
basis states of the two-parametric covariant irreps of SU(n) ⊃ SO(n).

In the remainder of the introduction we discuss the notation used for the alternative
versions of the projected SU(n) ⊃ SO(n) basis of the two parametric irreps (which cover
the general SU(3)⊃ SO(3) case), taking into account that normalization of [1] and [19]
is more convenient for arbitraryn > 3. The definition, some expressions and the main
symmetry properties of the partition-dependent functionsAλ

(
a,b,d,e

c

)
are also presented.

1.1. Definitions and relations between the projected SU(n)⊃ SO(n) bases

The two-parametric covariant irreps of SU(n) and SO(n) (n > 3) will be denoted in
Introduction and section 3 as(λν0̇) and [L1L2], where [λ + ν, ν] and [L1L2] are the
Young frames (partitions). The two versions of the projected non-orthonormal Elliott [3]
basis of SU(3)⊃ SO(3) may be expressed as∣∣∣∣∣ (λµ)E+

K+LM

〉
= PL

MK

∣∣∣∣∣ (λµ)

− 1
3(2λ + µ) 1

2µ 1
2K+

〉
(1.1a)

∣∣∣∣∣ (λν)E−

K−LM

〉
= PL

MK

∣∣∣∣∣ (λν)

1
3(λ + 2ν) 1

2ν 1
2K−

〉
(1.1b)

with the projection operatorsPL
MK acting on the intrinsic SU(3)⊃ U(2) states, denoted as∣∣∣∣ (a b)

y0, i0, iz = K+/2

〉
or

∣∣∣∣ (a b)

y0, i0, iz = K−/2

〉
in section 2 (see also [5–7]). The projected (Draayer [4]) states (E) of SU(4) ⊃
SU(2)× SU(2) with the spinS and isospinT (which are expedient to be interchanged
in the physical applications) may be obtained by means of the projection operatorsPS

MSk

andPT
MT k acting on the intrinsic SU(4) Gelfand–Tzetlin states:

∣∣∣∣∣ (λν0)E

kSMS; kT MT

〉
= PS

MSkPT
MT k

∣∣∣∣∣∣∣∣∣∣∣

λ + ν ν 0 0

k + 1
2λ + ν 0 0

k + 1
2λ + ν 0

k + 1
2λ + ν

B
B
BB

�
�
��

(1.2)

(see also [8] and [21–23]). Irreducible representations [L1L2] of SO(4) with L1 = S + T

and L2 = |S − T | appear for the basis states of the chain SU(4)⊃ SO(4), which may be
constructed more easy by means of the extrapolated to SU(n) ⊃ SO(n) isofactors [7, 8]
for coupling (p100) ⊗ (p200) to (λν0), although a supplementary factor is necessary for
renormalization between the extrapolatedE basis [8] and Elliott basisE− in the n = 3
case (taking into account the correspondencek = 1

2K−, L1 = L, L2 = 0 or 1, so that
λ − L1 − L2 is an even integer).

In [1] the relation between the above-mentioned SU(n) ⊃ SO(n) analogue [8]† E of
SU(4) ⊃ SU(2)× SU(2) projected basisE (obtained using the definite SU(n) ⊃ SO(n)

isofactors as analytical continuation of the SU(4)⊃ SO(4) isofactors) and basis [E] used

† For some corrections see also [9]. Note that in the r.h.s. of (5.2) the factor 2−n+3 is omitted andν − L2 − 10

is even.
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in [19] with a more natural behaviour (with respect to the analytical continuation for arbitrary
n) was discussed. The new basis [E] was determined as∣∣∣∣∣∣∣∣

(λν0̇)[E]

k[L1L2]n

· · ·

B
BB

�
��

≡
∑
κ6k

[
(p10̇) (p20̇) (λν0̇)

[p1] [p2] κ[L1L2]n

] ∣∣∣∣∣∣∣∣
(λν0̇)

κ[L1L2]n

· · ·

B
BB

�
��

(1.3a)

= N(λν; k[L1L2]n) G−1(n) [2(2ν + n − 4)!!(2λ + 2ν + n − 2)!!

×(L1 + L2 + n − 3)(L1 − L2 + 1)]−1/2

∣∣∣∣∣∣∣∣
(λν0̇)E

k[L1L2]n

· · ·

B
BB

�
��

(1.3b)

wherek = 1
2(p1 − p2), λ + 2ν = p1 + p2, with the boundary isofactor of SU(n) ⊃ SO(n)

on the r.h.s. of (1.3a) appearing as the weight coefficient for expansion in terms of the
orthonormal states with the labelκ. (In equation (1.3a) of [1] the corresponding label
κ 6 k]. Here and in section 3

N(λν; k[L1L2]n) =
[
(λ + 1) (λ + 2ν − L1 − L2)!!(λ + 2ν + L1 − L2 + n − 2)!!

(λ + 2ν + 2k + n − 4)!!

× (λ + 2ν − L1 + L2 + n − 4)!!(λ + 2ν + L1 + L2 + 2n − 6)!!

(λ + 2ν − 2k + n − 4)!!

]1/2

. (1.4)

For n even G(n) = 1 and for n odd G(n) = 0( 1
2)

/√
2. In the SU(3)⊃ SO(3) and

SU(4)⊃ SU(2)∣∣∣∣∣ (λν)[E]

kL(L2)M

〉
=

[
p1/2 p2/2 λ/2

p1/2 −p2/2 k

] [
p1 p2 L

p1 −p2 2k

]−1 ∣∣∣∣∣ (λν)E−

2k LM

〉
(1.5)

∣∣∣∣∣ (λν0)[E]

k; ST MSMT

〉
=

[
p1/2 p2/2 S

p1/2 −p2/2 k

]−1 [
p1/2 p2/2 T

p1/2 −p2/2 k

]−1

×
[

p1/2 p2/2 λ/2

p1/2 −p2/2 k

] ∣∣∣∣∣ (λν0)E

kSMS; kT MT

〉
(1.6)

with the renormalization coefficients expressed in terms of the boundary SU(2) Clebsch–
Gordan coefficients of the type[

j1 j2 j

j1 −j2 j1−j2

]
=

[
(2j1)!(2j2)!(2j + 1)

(j1 + j2 − j)!(j1 + j2 + j + 1)!

]1/2

.

The boundary isofactors on the r.h.s. of identity (1.3a) for n = 3 are multiples of the
boundary resubducing coefficients between the chains SU(3)⊃ U(2) ⊃ SO(2) and SU(3)⊃
SO(3)⊃ SO(2)[

(p10) (p20) (λν)

[p1] [p2] κL(L2)3

]
=

[
(λ + 1)(p1 + p2 − L)!(p1 + p2 + L + 1)!

2p1+p2ν!(λ+ν+1)!(2p1−1)!!(2p2−1)!!(2L+1)

]1/2

×
〈

(λν)

1
3(λ + 2ν) 1

2ν 1
2K−

∣∣∣∣∣ (λν)

κ LK−

〉
(1.7a)
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(with K− = p1−p2, λ+2ν = p1+p2, κ 6 1
2K−), and coincide with the orthogonalization

coefficientsÕ(λν,L)3
kκ of the dual basis [E], as well as[

(p10̇) (p20̇) (λν0̇)

[p1] [p2] κ[L1L2]n

]
≡ Õ(λν,L1L2)n

kκ (1.7b)

for arbitrary n. Otherwise, the boundary resubducing coefficients [between the chains
SU(3) ⊃ U(2) ⊃ SO(2) and SU(3)⊃SO(3)⊃ SO(2)] on the r.h.s. of (1.7a) are equivalent
to OCs of the dual projected basisE. Hence, the orthonormal SU(n) ⊃ SO(n) states may
be expanded as follows:∣∣∣∣∣∣∣∣

(λν0̇)

κ[L1L2]n

· · ·

B
BB

�
��

=
∑
k6κ

O(λν,L1L2)n
κk

∣∣∣∣∣∣∣∣
(λν0̇)[E]

k[L1L2]n

· · ·

B
BB

�
��

(1.8a)

=
∑
k>κ

Õ(λν,L1L2)n
kκ

∣∣∣∣∣∣∣∣
(λν0̇)[E]

k[L1L2]n

· · ·

B
BB

�
��

(1.8b)

with the orthogonalization coefficients satisfying the conditions∑
κ>k>κ

Oκ,kÕk,κ ′ = δκ,κ ′
∑

k>κ>k

Õk,κOκ,k′ = δk,k′ (1.9)

sinceOκ,k = 0 for κ < k andÕk,κ = 0 for k < κ.
The direct and inverse orthogonalization coefficients used both together are very

convenient for the Engeland [24] (see also [4] and [9]†) construction of the SU(3)⊃
SO(3) isofactors in terms of special SU(3)⊃ U(2) isofactors, the inverse resubducing
coefficients [8] and SU(2) Clebsch–Gordan coefficients, as demonstrated by equation (1.12)
of [1]. Recall [1] that the orthogonalization coefficients for theE+ basis may be obtained
from OCs ofE− basis of SU(3)⊃ SO(3), after the substitution of parametersλ → µ and
ν → λ and appearing additional phase factor(−1)k−κ . The transition to the two-parametric
contravariant irreps(0̇νλ) of SU(n) is accompanied by the same phase factor.

1.2. Definition and some properties of the Biedenharn and LouckAλ functions

In our formulae throughout the paper we will use the following notation for the rising and
falling factorials:

(X)k = X(X + 1) · · · (X + k − 1) = (X + k − 1)(k) (1.10a)

X(k) = X(X − 1) · · · (X − k + 1). (1.10b)

with (X)0 = X(0) = 1 and(X)1 = X(1) = X.
In [1, 16] and in this paper the numerator and denominator polynomials of OCs are

expressed in terms of the partition-dependent generalization of the Saalschutzian (balanced)

† Note that 1
4 should be changed (twice) to12 in (5.5) of [9], the first symbol× on the r.h.s. of (5.10) should be

corrected to + and the parameter|K ′| > 1 + δ.
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4F3 hypergeometric series [25, 26], introduced by Biedenharn and Louck [12–14] as the
auxiliary Aλ function (used in [13] in the proof of the symmetry of theG t

q (A) polynomials):

Aα

(
a, b, d, e

c

)
=

t∏
s=1

(a + b + c − s + 1)αs
(c + d + e − s + 1)αs

×
∑
βγ

g(βγ α) 〈2F1(a, b; a+b+c)|β〉 〈2F1(c+d, c+e; c+d+e)|γ 〉 (1.11a)

=
∑
βγ

g(βγ α)

M(β)M(γ )

t∏
s=1

(a − s + 1)βs
(b − s + 1)βs

×(a + b + c + βs − s + 1)αs−βs
(c + d + e + γs − s + 1)αs−γs

×(c + d − s + 1)γs
(c + e − s + 1)γs

. (1.11b)

Here the Littlewood–Richardson numberg(βγα) is equal to the multiplicity of the irrepα
of U(t) in the decomposition of the direct productβ ⊗ γ , the generalized hypergeometric
coefficients〈2F1(a, b; c)|λ〉 are expressed as follows:

〈2F1(a, b; c)|λ〉 = M−1(λ)

t∏
s=1

(a − s + 1)λs
(b − s + 1)λs

/
(c − s + 1)λs

(1.12)

and measure

M(λ) = N !/dλ =
t∏

s=1

(λs + t − s)!

/∏
s<k

(λs − λk − s + k) (1.13)

is expressed in terms of the dimensionsN ! and dλ of the permutation groupSN and its
irrep λ.

The functionAα

(
a,b,d,e

c

)
is a polynomial (with rational coefficients for a fixed partition

α) in five free parametersa, b, c, d, e and satisfies the evident symmetry relations [12, 14]

Aα

(
a, b, d, e

c

)
= (−1)

∑
s αs Aα∗

(−a, −b, −d, −e

−c

)
(1.14a)

= Aα

(
d + c, e + c, a + c, b + c

−c

)
(1.14b)

= Aα

(
b, a, d, e

c

)
= Aα

(
a, b, e, d

c

)
(1.14c)

(whereα∗ means the partition with the interchanged rows and columns of the Young tableau
α) and isS4 invariant [14] with respect to all 4! permutations of the parametersa, b, d, e.
(This last invariance is very important for the uniqueness of our solutions for the numerator
polynomials [1, 2, 16], although its proof [14]† for the permutationb ↔ d is very tedious).
We get the balanced4F3 hypergeometric series in the case of a single row or (taking into
account relation (1.14a)) column in the partitionα.

The partitionsα of the functionsAα, corresponding to our denominator polynomials,
include t equal rows: α̇ = [h̃t ] (the coefficients of the corresponding polynomials turn
into integers after multiplication byM(α)), but in the case of the numerator polynomials

† Note that lemma 6.2 of [14] should be reformulated (sincezn andz′′
n are not necessarily equal to 0 both together)

without spoiling the main proposition.
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only partitions with the deleted squares in the last row,α = [h̃t−1, h], or column,
α′ = [(̃h + 1)t

′−l h̃l ], may also appear. Hence, in these cases the multiplicitiesg(βγα)

or g(βγα′) also do not exceed 1, with

βs + γt+1−s = h̃

t∑
s=1

(βs + γs) = h̃t (1.15a)

in the first case and

h̃ − βt−s+1 > γs > h̃ − βt−s > γs+1

t∑
s=1

(βs + γs) = h̃(t − 1) + h (1.15b)

in the second. We may interchange the rows and columns ofα′, β andγ , and use relation
(1.14b) in the third case.

For a 6 0 or b 6 0 integers, the number of columns inβ is restricted:βs 6 β1 6 −a

or −b, as well as forc+d 6 0 or c+ e 6 0 integers, the partitionγ is restricted in (1.11b):
γ1 6 −c − d or −c − e. Otherwise, fora or b positive integers, the number of rows inβ
is restricted:βs ′ = 0, if s ′ > a or b, as well as forc + d or c + e positive integers,γs ′ = 0,
if s ′ > c + d or c + e. When these restrictions exceed those caused by conditions (1.15a)
or (1.15b), some common factors (appearing in all non-vanishing terms of (1.11b)) may be
carried out before the expression, in order to write the reduction formulae ofAλ functions
with shifted values ofαs anda, b, d, e, c. For specified values ofa, b, d, or e, the roots of
these common factors give the sets of zeros of the functionsAα, distributed as the SU(3)
weight space of zeros [13] or the truncated weight space of zeros [1, 16], respectively.

For special partitionsα̇ = [h̃t ], the function Aα

(
a,b,d,e

c

)
may be expressed (cf

equation (1.25) of [14]) in a more symmetric form:

Aα̇

(
a, b, d, e

c

)
=

∑
β

[M(β)M(β)]−1
t∏

s=1

(−1)βs (a − s + 1)βs
(a + c − s + 1)βs

×(a + b + d + e + 2c + h̃ − t − s + 1)βs
(a + b + c + βs − s + 1)αs−βs

×(a + d + c + βs − s + 1)αs−βs
(a + e + c + βs − s + 1)αs−βs

(1.16)

where

βs = h̃ − βt−s+1.

Of course, equations (1.11) and (1.16) simplify considerably fort = 1 (turning into the
4F3(1) hypergeometric series) and, in particular,A[0]

(
a,b,d,e

c

) = 1.

2. Orthogonalization coefficients for the paracanonical and pseudocanonical
isofactors of SU(3)

In this section, we present the explicit polynomial expressions of the boundary orthonormal
isofactors of SU(3)⊃ SO(3), which correspond to the paracanonical and pseudocanonical
labelling schemes and form the triangular orthogonalization matrices of the Gram–Schmidt
process for the non-orthogonal isofactors satisfying simple boundary conditions [15].
Presented inverse matrices are formed by OCs of the standard (minimal) bilinear
combinations of isofactors. Although we cannot avoid the Gram–Schmidt process for
these versions of the SU(3) coproduct splitting (contrary to the canonical splitting [27]),
the structure of the numerator–denominator polynomials is simpler than for the canonical
splitting of Loucket al [13].
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We use in this section the same notation for the irreps and their basis states as in
[15, 16], with (a b) for the mixed tensor irreps wherea = m13 − m23, b = m23 − m33

and [m13, m23, m33] is a Young frame (partition). The basis states are labelled by the
hyperchargey = m12 + m22 − 2

3(m13 + m23 + m33), the isospini = 1
2(m12 − m22), and

its projection iz = m11 − 1
2(m12 + m22), where the integersmij are the Gelfand–Tsetlin

parameters. Sometimes the parameter

z = 1
3(b − a) − 1

2y = m23 − 1
2(m12 + m22) (2.1)

is more convenient thany, because

i ± z > 0 a + z − i > 0 b − z − i > 0 (2.2)

are integers. In the case of coupling(a′b′) ⊗ (a′′b′′) to (a b)

z = z′ + z′′ + v where v = 1
3(a′ − b′ + a′′ − b′′ − a + b) (2.3)

is an integer. We also use the following notation for the parameters of the highest- and
lowest-weight states:

y ′
0 = 1

3(a′ + 2b′) i ′0 = −z′
0 = 1

2a′ y ′′
0 = − 1

3(2a′′ + b
′′
) i

′′
0 = z′′

0 = 1
2b′′. (2.4)

The boundary paracanonical isofactors and inverse orthogonalization coefficientsQj,Ĩ

with label Ĩ of repeating irreps satisfy the conditions of biorthogonality∑
Ĩ

Qj,Ĩ (a
′b′y ′

0i
′
0a

′′b′′y ′′
0i

′′
0||a b ỹi;Ĩ ) = δj,i (2.5a)

∑
i

(a′b′y ′
0i

′
0a

′′b′′y ′′
0i

′′
0||a b ỹi; Ĩ )Qi,J̃ = δĨ ,J̃ . (2.5b)

For the chosen version [15, 16] of the paracanonical coupling the multiplicity labelĨ

(the intrinsic isospin of the Gelfand–Weyl–Biedenharn pattern) satisfies the conditions

Ĩ ± z̃ > 0 a + z̃ − Ĩ > 0 b − z̃ − Ĩ > 0

Ĩ ± ĩz > 0 i ′0 + i
′′
0 − Ĩ > 0 Ĩ > B

(2.6a)

where

B = 1
2(a + b − b′ − a′′ + |v|) ĩz = 1

2(a′ − b′′) z̃ = 1
2(b′′ − a′) + v. (2.6b)

Expressions (2.1) and (4.1) of [16] for the boundary paracanonical isofactors and
corresponding inverse orthogonalization coefficientsQj,Ĩ with the fixed values ofb − 2̃z ≡
b′ − a′′ + a + v, i − z̃, andb − z̃ − Ĩ may be written as follows:

(a′b′y ′
0i

′
0, a

′′b′′y ′′
0i

′′
0||a b ỹi; Ĩ ) = (−1)Ĩ−i L K Ĩ ,i gĨ ,i

(Ĩ − i)! [gĨ,Ĩ gĨ+1,Ĩ+1]1/2
(2.7a)

Q
(a′b′,a′′b′′;ab)

j,Ĩ
= (2j + 1) Kj,Ĩ gj,Ĩ

(j − Ĩ )!(j + Ĩ + 1) L [gĨ,Ĩ gĨ+1,Ĩ+1]1/2
. (2.7b)

Here

L =
[

(a+1)(b+1)(a+b+2)b′(b−̃z−Ĩ )(a′+b′+1)(b−̃z−Ĩ )(b−z̃+i+1)(b−̃z−Ĩ )

(a′′ + 1)Ĩ −̃z+1(a
′′ + b′′ + 2)Ĩ −̃z+1(i + z̃ + 1)Ĩ −̃z+1

]1/2

(2.8)
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includes the linear numerator and denominator factors, appearing together with their
counterparts from the symmetry properties and decomposition of the Gram determinants
and eliminating the superfluous matrix elements. The factor

Kj,i = [(j + ĩz)
(j−i)(j − ĩz)

(j−i)(i ′0 + i
′′
0 − i)(j−i)(i ′0 + i

′′
0 + j + 1)(j−i)(j − z̃)(j−i)

×(a + z̃ − i)(j−i)(a + z̃ + j + 1)(j−i)(b − z̃ − i)(j−i)]1/2 (2.9)

(with 0 for j < i) appears as an analogue of pattern calculus factors. The numerator–
denominator polynomials may be expressed as

gĨ,i = M(α)Aα

( a, b, d, e

c

)
gj,Ĩ = M(α′)Aα′

( a, b, d, e

c − 1

)
(2.10)

where

a = b′ + v + 1 b = a′ + a′′ + b − v + 3 d = a′′ + b − v + 2

e = b′ + b′′ + v + 2 c = v − z̃ − Ĩ − a′ − a′′ − b′ − 3

and

α = [h̃t−1, h] α′ = [(̃h + 1)t−l−1h̃l ] t = b − z̃ − Ĩ + 1

h̃ = Ĩ − z̃ h = i − z̃ l = j − Ĩ .

In particular

gb−̃z+1,b−̃z+1 = g̃z,̃z = gb−̃z,̃z = gb−̃z,b−̃z = gz̃−1,̃z−1 = gb−̃z,̃z = 1

gĨ,Ĩ = gĨ+1,Ĩ+1 gĨ+1,Ĩ = gĨ+1,Ĩ .

We modify the formal structure of the boundary pseudocanonical isofactors slightly (cf
equations (4.11) of [15]) and express them (for fixedb − 2̃z, i − z̃, andb − z̃ − j̃ ) together
with the corresponding inverse orthogonalization coefficients as follows:

(a′b′y ′
0i

′
0a

′′b′′y ′′
0i

′′
0||a b ỹi; j̃ ) = (−1)i−j̃ L K i,j̃ gi,j̃

(i − j̃ )! [gj̃,j̃ gj̃−1,j̃−1]1/2
(2.11a)

Q
(a′b′,a′′b′′;ab)

j̃ ,i = (2i + 1) K j̃ ,i g
j̃ ,i

(j̃ − i)! (j̃ + i + 1) L [gj̃,j̃ gj̃−1,j̃−1]1/2
(2.11b)

where

L =
[

(a + 1)(b + 1)(a + b + 2) b′(j̃−̃z)(a′ + b′ + 1)(j̃−̃z)(i + z̃ + 1)j̃−̃z

(a′′ + 1)b−̃z−j̃+1(a
′′ + b′′ + 2)b−̃z−j̃+1(b − z̃ + i + 1)(b−̃z−j̃+1)

]1/2

. (2.12)

We see that equations (2.11a) and (2.11b) may be obtained from (2.7a) and (2.7b),
respectively, by means of the substitutions

a → a + b + 1 b → −b − 2 v → −b + v − 1

z̃ → z̃ − b − 1 i → −i − 1 Ĩ → −j̃ − 1
(2.13)
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which leaves the eigenvalues of the SU(3) and SU(2) Casimir operators invariant. The
parametersa′, b′, a′′, b′′, a+ z̃, b− 2̃z, a+v are also left unchanged. The same substitutions
into (2.10) allows us to write the expressions for the numerator–denominator polynomials

gi,j̃ = (−1)
∑

s αs M(α)Aα

( a′, b′, d′, e′

c′

)
(2.14a)

gj̃,i = (−1)
∑

s α′
s M(α′)Aα′

( a′, b′, d′, e′

c′ − 1

)
(2.14b)

where

a′ = b′ − b + v b′ = a′ + a′′ − v + 2 d′ = a′′ − v + 1

e′ = b′ + b′′ − b + v + 1 c′ = v + j̃ − z̃ − a′ − a′′ − b′ − 2

and

α = [h̃t−1, h] t = j̃ − z̃ + 1 h̃ = b − z̃ − j̃

h = b − z̃ − i α′∗ = [(j̃ − z̃)b−̃z−j̃ , i − z̃].

The denominator polynomialsgj̃,j̃ and gj̃,j̃ may accept only non-negative values. In
particular

gb−̃z,b−̃z = gz̃−1,̃z−1 = gb−̃z,̃z = g b−̃z+1,b−̃z+1 = g z̃,̃z = g b−̃z,̃z = 1

gj̃,j̃ = gj̃−1,j̃−1 g j̃,j̃−1 = gj̃,j̃−1.

We can check equations (2.11a), (2.11b) and (2.14) for extreme values of̃j with the
corresponding expressions of the overlaps [15], but the substitutions (2.13) allow us to
avoid the necessity of reconsidering for the polynomialsgi,j̃ andgj̃,i the arguments about
their polynomial structure, symmetries, reduction formulae and distribution of zeros, used
in [16] in the case of the polynomialsgĨ,i .

In the same way as the corresponding function (1.15) of [16], the function

(a′b′y ′
0i

′
0a

′′b′′y ′′
0i

′′
0||a b ỹi; j̃ )

[(a + 1)(b + 1)(a + b + 2)(a′ + 1)(b′′ + 1)M(a′ + b′, b′)M(a′′ + b′′, a′′)]1/2 (2.15)

is invariant under 24 transformations of array (1.13) of [16] and, in particular, with respect
to the substitutions

a → b′ − a′′ + a + v b → a′′ − b′ + b − v

b′ → a′′ − v a′′ → b′ + v
(2.16)

(and a + z̃ ↔ b − z̃, with fixed a′, b′′, v, z̃ and ĩz). This last Regge-type symmetry is
also very important for the results presented in the next section. Recall that the general
SU(3) pseudocanonical isofactors may be expanded in terms of the minimal biorthogonal
systems [15] (cf equation (1.11) of [16]).
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3. Explicit orthogonalization of the projected bases of two-parametric irreps

The repeating irreps [L1L2] of SO(n) in the projected states of the representation(λν0̇) of
SU(n) are distinguished by the intrinsic multiplicity labelk:

1
2(10 + δ0) 6 k 6 1

2 min(λ, L1 − L2) (3.1)

where10 = 0 or 1, δ0 = 0 or 1; ν − L2 − 10 andλ + ν − L2 − δ0 are even integers and
1
2λ − k is an integer.

When the linearly independent states are chosen as in [1, 3–8] from above with
k > 1

2(L1 − 10 − ν), the orthogonalization coefficients from [1]† may be presented in
the following more compact forms:

B̃
(λν,L1L2)n
κ,k = (2k)(10+δ0)/2 B[λν,L1L2]n

κ,k gκ,k

(κ − k)!(κ + k)!
[
gκ,κ gκ+1,κ+1

]1/2 (3.2a)

B
(λν,L1L2)n
k,κ = (−1)k−κ (2k)1−(10+δ0)/2 (κ + k − 1)! gk,κ

(k − κ)!
[
gκ,κ gκ+1,κ+1

]1/2
B[λν,L1L2]n

κ,k

. (3.2b)

Here non-negative even integers in the double factorial(ν − L1 − 10 + 2κ)!! (appearing
under the square root sign together with their counterparts from the decomposition of the
Gram determinants in accordance with their symmetry properties) in the numerator of

B[λν,L1L2]n
κ,k = 2−(λ+n−3)/2−ν N(λν; k[L1L2]n)

[(ν − L1 − 10 + 2κ)!!(ν + L2 + 2τ − 10 + 2κ + n − 2)!! ]1/2

× R(k[L1L2]κ; στ)n

[(ν − L1 + 2τ − δ0 + 2κ + 1)!!(ν + L2 − δ0 + 2κ + n − 3)!! ]1/2 (3.3)

restrict the parameters and eliminate the superfluous matrix elements of OCs. The factor

R(k[L1L2]κ; στ)n = 22k−10−δ0−σ

[
(σ + k)!(τ + κ)!(σ − k)!(τ − k)!

(τ + k)!(σ − κ)!(τ − κ)!

× (L1 + L2 + 2κ + n − 4)!!(L1 + L2 − 2k + n − 4)!!

(L1 + L2 + 2k + n − 4)!!(L1 + L2 − 2κ + n − 4)!!

× [κ − (10 + δ0)/2]!(2κ − δ0 + 10 − 1)!!(2κ + δ0 − 10 − 1)!!

(2k + δ0 − 10 − 1)!!(2k − δ0 + 10 − 1)!!

]1/2

(3.4)

appeared in accordance with the factors under the square root of the overlaps of non-
orthogonal states. The notation

σ = 1
2 min(L1 − L2, λ) τ = 1

2 max(λ, L1 − L2) (3.5)

permitted to merge in (3.2a), (3.2b) both versions, presented as equations (2.3), (2.4) and
(2.13), (2.14) of [1], respectively;N(λν; k[L1L2]n) is defined as (1.4). Fork = 10 = δ0 = 0
in (3.2a), the indeterminacy(2k)(10+δ0)/2 = 1, as well as fork = κ = 0 in (3.2b),
(2k)(κ + k − 1)! = 1.

† Note that the parametersk + 1
2λ + ν should be written jointly in (1.2) of [1],gκκ should appear instead ofgκk

in the denominators of (2.3) and (2.13), as well asgkκ instead ofgkκ in the numerator of (2.4); in the second row
of the r.h.s. of (2.8),−2+ s](α

′
s ) should be replaced by−1+κ + s](α

′
s ) and−δ0 +1 should be replaced by−δ0 −1

in the last row of (2.27b).
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The numerator–denominator polynomials (functions) in (3.2a) and (3.2b) may be
expressed as (2.7), (2.8), (2.16), (2.17) of [1] and are combined as follows:

gκ,k = M(α)Aα

(
a, b, d, e

c

)
gk,κ = M(α′)Aα′

(
a, b, d, e

c − 1

)
(3.6)

where

α = [(κ − 1
2(10 + δ0))

σ−κ , k − 1
2(10 + δ0)]

α′ = [(κ − 1
2(10 + δ0) + 1)σ−k, (κ − 1

2(10 + δ0))
k−κ ]

(3.7)

a = 1
2(λ + ν + L1 + 10 + n − 1) b = σ + 1

2(ν − L1 + 10 + 1)

c = − 1
2(λ + 2ν + n − 1) − κ d = σ + 1

2(ν + L2 + δ0 + n − 2)

e = 1
2(λ + ν − L2 + δ0) + 1

(3.8)

and, in particular,

gσ+1,σ+1 = g(10+δ0)/2,(10+δ0)/2 = 1

gκ,κ = gκ+1,κ+1 gκ+1,κ = gκ+1,κ .
(3.9)

Of course, the partitions (3.7) are formed by integers, but some parametersa, b, c, d, e, or
their linear combinations appearing in expressions (1.11b) and (1.16) of polynomialAα may
be half-integers.

At last we may present the main result of this paper. Following Vergados [17] and
Tolstoy [18], and in contrast to [1], we choose the linearly dependent states with parameters
k > 1

2 min(λ + ν − L1 + δ0, ν − L2 + δ0). In this case the multiplicity labelκ of the
generalized orthonormal Vergados–Elliott–Draayer states satisfy conditions:

1
2(10 + δ0) 6 κ 6 1

2 min(λ, L1 − L2, λ + ν − L1 + δ0, ν − L2 + δ0). (3.10)

Using arguments similar to those used in [1] (cf also [2, 15, 16]) about the symmetry
and the linear factors of the OCs in the numerator and denominator under the square
root, as well as about the polynomial structure and zeros (roots) of the numerator–
denominator polynomials and the total OCs, we derived the following expressions for the
orthogonalization coefficients̃O(λν,L1L2)n

k,κ andO(λν,L1L2)n
κ,k :

Õ(λν,L1L2)n
k,κ = (1 + δk,0)(κ + k − 1)! (2k)1−(10+δ0)/2 gk,κ B

[λν,L1L2]n
k,κ

(k − κ)!
[
gκ,κ gκ−1,κ−1

]1/2 (3.11a)

O(λν,L1L2)n
κ,k = (−1)κ−k (1 + δk,0)

−1 (2k)(10+δ0)/2 gκ,k

(κ − k)!(κ + k)!
[
gκ,κ gκ−1,κ−1

]1/2
B

[λν,L1L2]n
k,κ

. (3.11b)

Here non-negative even integers in the double factorial(ν − L1 + 2σ + δ0 − 2κ)!! (again
appearing together with their partners, corresponding to the symmetry properties of the
overlaps) in the numerator of

B
[λν,L1L2]n
k,κ = 2−(λ+n−1)/2−ν N(λν; k[L1L2]n)

R(k[L1L2]κ; στ)n
[(ν − L1 + 2σ + δ0 − 2κ)!!

×(λ + ν + L1 + δ0 − 2κ + n − 2)!!(λ + ν − L2 + 10 + 1 − 2κ)!!

× (ν + L2 + 2σ + 10 − 2κ + n − 3)!! ]−1/2 (3.12)
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restrict the parameters and eliminate the superfluous matrix elements of the OCs. In (3.12)
the same auxiliary notation for the renormalization factor (1.4), the ratio (3.4) of the linear
(pattern calculus) factors under the square root sign and parametersσ, τ (3.5) for merging
of the different solutions are used. Again fork = κ = 10 = δ0 = 0 in (3.11a), the
indeterminacy(κ + k − 1)!(2k)1−(10+δ0)/2 = 1 and in (3.11b), (2k)(10+δ0)/2 = 1. (The
additional factors(1 + δk,0) and (1 + δk,0)

−1 will be explained later). The numerator–
denominator polynomials (functions) are expressed in (3.11a) and (3.11b) as follows:

gk,κ = (−1)
∑

s βs M(β)Aβ

(
a′, b′, d ′, e′

c′

)
(3.13a)

gκ,k = (−1)
∑

s β ′
s M(β ′)Aβ ′

(
a′, b′, d ′, e′

c′ − 1

)
(3.13b)

where

β = [(σ − κ)κ−(10+δ0)/2, σ − k]

β ′ = [(σ − κ + 1)k−(10+δ0)/2, (σ − κ)κ−k]
(3.14)

a′ = 1
2(ν + L2 − 10 + n − 2) b′ = τ + 1

2(ν − L1 − 10) + 1

c′ = − 1
2(λ + 2ν + n − 1) + κ d ′ = τ + 1

2(ν + L2 − δ0 + n − 1)

e′ = 1
2(ν − L1 − δ0 + 1)

(3.15)

and, in particular, forβ = 0 or β ′ = 0

gσ,σ = g(10+δ0)/2,(10+δ0)/2 = gσ,(10+δ0)/2 = 1

gκ,κ = gκ−1,κ−1 gκ,κ−1 = gκ,κ−1.
(3.16)

Again, some parametersa′, b′, c′, d ′, e′ of the polynomialsAα may be half-integers. Of
course, the denominator polynomialsgκ,κ accept only non-negative values.

Equations (3.11a), (3.11b) and (3.13) were proved preliminarily for extreme values of
κ = 1

2(10 + δ0) andκ = 1
2(L1−L2). The boundary OCs may be expressed in terms of the

overlaps as follows:

Õ(λν,L1L2)n
k,(10+δ0)/2 = 〈[E] k

∣∣[E] 1
2(10+δ0)

〉〈
[E] 1

2(10+δ0)
∣∣[E] 1

2(10+δ0)
〉1/2 (3.17a)

O(λν,L1L2)n
(L1−L2)/2,k =

〈
[E] 1

2(L1−L2)
∣∣[E] k

〉〈
[E] 1

2(L1−L2)
∣∣[E] 1

2(L1−L2)
〉1/2 . (3.17b)

For this purpose the overlap

〈[E] k
∣∣[E] 1

2(10+δ0)
〉 ≡

�
��

B
BB

(λν0̇)[E]

k[L1L2]n

· · ·

∣∣∣∣∣∣∣∣
(λν0̇)[E]

1
2(10+δ0) [L1L2]n

· · ·

B
BB

�
��

(3.18a)

should be expressed using the corrected formula (5.4) of [8], together with our equation
(1.3b). Since the summation parameterx = 0 is fixed and the sum overl2 is equivalent to
the summable Saalschutzian [25, 26] (balanced)3F2(1) hypergeometric series, the last sum
over l0 in the final expression for (3.18a) corresponds to the balanced4F3(1) hypergeometric
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series in a related to (1.16) form in accordance with the first expression (3.13) forgk,(10+δ0)/2.
Otherwise, the overlap

〈
[E] 1

2(L1−L2)
∣∣[E] k

〉 ≡
�
��

B
BB

(λν0̇)[E]

1
2(L1−L2) [L1L2]n

· · ·

∣∣∣∣∣∣∣∣
(λν0̇)[E]

k [L1L2]n

· · ·

B
BB

�
��

(3.18b)

for k′ = 1
2(L1−L2) 6 1

2λ may be expressed by means of equation (5.7) of [19], together
with our formula (1.3b). In this case the expansion overk′ = k′ is trivial, the summation
parameterl2 is restricted asl2 = L2 + 10 + 2z and the sum overz is of the type,
corresponding to the summable balanced3F2 series, as well as the afterwards obtained
sum overy. Hence, the last sum overt of the final expression for (3.18b) corresponds to
the balanced4F3(1) hypergeometric series, which again may be presented in the form related
to (1.16) in accordance with expression (3.13b) for g(L1−L2)/2,k, taking into account relation
(1.14a). The factor(1+ δk,0)

−1 in (3.11b) and in the expression for (3.18b) appearing from
(5.7) of [19] can be replaced by12 when the orthonormal states are expanded in terms of
the linearly dependent projected states with positive and negativek.

Up to theκ-independent renormalization factors, determined completely by the strictly
derived formulae (3.17a) and (3.17b), the orthonormalization coefficients (3.11a) and (3.11b)
may be obtained by an analytical continuation of the OCs (2.11a) and (2.11b) of the
pseudocanonical isofactors, in a similar manner to the way the OCs (3.2a) and (3.2b) were
obtained by means of the analytical continuation [1] of the OCs (2.7a) and (2.7b) of the
paracanonical isofactors [15, 16]. For fixedL1−L2, the parameters of (2.11a) and (2.11b)
should be replaced by means of the same substitutions as in [1], namely

i → k− 1
2 j̃ → κ− 1

2 z̃ → 1
2(10+δ0−1)

ĩz → 1
2(δ0−10) v → δ0− 1

2

a′ → − 1
2(L1+L2+10−δ0+n−1) b′ → 1

2(ν+L1−δ0+n−3)

a′′ → 1
2(λ+ν+L2+δ0+n)−2 b′′ → − 1

2(L1+L2−10+δ0+n−1)

a → 1
2(λ − 10 − δ0) b → 1

2(L1 − L2 + 10 + δ0) − 1

(3.19)

in accordance with the correlated symmetries and restricting properties of the boundary
SU(3) ⊃ U(2) and SU(n) ⊃O(n) isofactors and the corresponding overlap coefficients,
visually represented as array (1.13) of [16] and array (2.23) of [1].

Similarly, for fixedλ, expressions (3.11a) and (3.11b) may be obtained by means of the
substitutions (3.19) applied after (2.16). Finally, we presented the both couples of solutions
(for L1−L2 6 λ and forL1−L2 > λ) in the unified forms as (3.11a) and (3.11b) (and the
analogous results of [1] as (3.2a) and (3.2b)). It was convenient also to replace in (3.2a),
(3.2b), (3.11a) and (3.11b) some ratios of factorials of the type (1.10b) by elementary
powers of(2k) (with the exponents(10 + δ0)/2 or 1− (10 + δ0)/2). However, we see that
neither the inverse reconstruction of (2.14) and (2.17) from (3.11a) and (3.11b) is possible,
nor the immediate transition between (3.2a), (3.2b) and (3.11a), (3.11b) is allowed, since
the parameters10 andδ0 are determined by the parities of the remaining parameters.

For d0 = 1
2(L1 − ν − δ0) > 0, the summation parameters ofAβ and Aβ ′ in (3.13)

are restricted and the numerator–denominator polynomialsgk,κ include the common factors
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(
1
2(ν + L2 + δ0 + n − 2) − κ

)
d0+κ−k

(
τ + 1

2(ν − L1 + δ0) − κ + 2
)
d0+κ−k

×[ 1
2(L1−ν−10−1)+κ](d0+κ−k)

κ−(10+δ0)/2∏
s=1

(
1
2(ν+L2−10+n)−s

)
d0

× (
τ + 1

2(ν − L1 − 10) − s + 2
)
d0

[ 1
2(L1 − ν + δ0 − 3) + s](d0) (3.20a)

with the first three factors replaced by 1, whend0 + κ − k < 0. Althoughκ doesn’t exceed
σ −d0, parameterk may be extended to the all valuesk 6 σ , in accordance with definitions
(1.7a) or (1.7b). The numerator–denominator polynomialsgκk, respectively, include the
common factors
κ−(10+δ0)/2∏

s=1

[ 1
2(ν + L2 − 10 + n) − s]d0+θs−1[τ + 1

2(ν − L1 − 10) − s + 2]d0+θs−1

×[ 1
2(L1 − ν + δ0 − 3) + s](d0+θs−1) (3.20b)

where θs = 1 for 1 6 s 6 k − (10 + δ0)/2 and 0 otherwise. The reduction factors
(3.20a) and (3.20b) should be taken into account when rearranging the polynomial structure
(distribution of the linear and polynomial factors under square root sign) of (3.11a) and
(3.11b) for ν − L1 + δ0 < 0.

Note, that expressions (3.11a) and (3.11b) for the OCs are valid and may be proved
separately forσ = 1

2(L1−L2, ), τ = 1
2λ and forσ = 1

2λ, τ = 1
2(L1−L2), without using

the substitutions (3.19). We see that polynomials (3.13) have the (truncated) SU(3) weight
spaces of zeros [13, 17], correlated mutually and with linear factors in the numerator and
denominator position of (3.11a), (3.11b) and coinciding with the roots of (3.20a) and (3.20b)
(when condition (3.5) is relinquished). Besides, similarly as overlaps of the projected states,
the polynomialsgk,κ and gκ,k are invariant with respect to the transformations, generated
by the substitutions

L1 → −L1 − n + 2 or L2 → −L2 − n + 4 (3.21a)

and

L1 ↔ L2 − 1 (3.21b)

(together with δ0 ↔ δ0 for agreement of parities), but the totalS4 symmetry of the
polynomialsgk,κ and gκ,k is correlated with theS4 symmetry of four last double factorial
factors in (3.12) under the square root sign. Thus, the uniqueness of expressions for
the polynomials (3.13) are conditioned by thea′, b′, d ′, e′ permutation symmetries, the
distribution of zeros and the total powers of these polynomials, restricted by the number of
squares in the partitionsβ, β ′ (cf [1, 2, 12, 16, 20]).

4. Concluding remarks

In this paper, the importance of theAλ functions of the Biedenharn and Louck was
demonstrated for the explicit solution of the orthogonalization problem of the biorthogonal
projected bases of the different subgroup chains with the single missing label, such
as SU(3)⊗ SU(3) ⊃ SU(3) and SU(n) ⊃ SO(n). The corresponding approach,
considered in section 2, may also be useful in the case of the complementary chain
U(4) ⊃ U(2)⊕U(2), restricted to the block-diagonal subgroups [27], as well as for the
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chains U(n) ⊃ U(n − 2)⊕U(2) in the case of the three-parametric irreps. Probably,
this approach may be also extended to explicit orthogonalization of the biorthogonal
coupling coefficients [28] of quantum algebrauq(3), although its proof may be rather
problematic. Otherwise, extension of some results of section 3 to the complementary
chain Sp(4)⊃ U(2) (cf [2]) is also possible. Still an open problem is the possibility of
the direct construction of the orthonormal states for these missing label states, in analogy
with the explicit SU(3)⊗ SU(3) ⊃ SU(3) canonical solution [13, 20]. It is possible that
the resolution of the problem of Louck and co-workers [10, 11] for SU(3)⊃ SO(3) may
also appear as some contraction (with some hidden parameters, similar to10 andδ0) of the
SU(3)⊗ SU(3) ⊃ SU(3) canonical solution, with a related structure of the normalization
factors and the denominator polynomials.
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Appendix. Orthogonalization coefficients for Elliott’s basis of SU(3)⊃ SO(3)

Now we may specify our orthogonalization coefficients (3.11b) for the projected basis states
(1.1a) of the SU(3)⊃ SO(3) Elliott basis, labelled by theK+,

δ + 1 6 K+ 6 min(µ, L − 1) (A.1)

whereδ = 0 or 1,1 = 0 or 1, and1 = 0 or 1, such thatλ + µ − L − δ, λ − L − 1, and
µ − L − 1 are even integers. Finally, for fixedµ we write

O[λµ,L]3
κ̃,K+ = 2(1 + δK+,0)

−1 K
(1+δ)/2
+ g̃̃κ,K+ R[λµ,L]3

κ̃,K+[
1
2 (̃κ − K+)

]
!
[

1
2 (̃κ + K+)

]
!

[̃
g̃κ,̃κ g̃̃κ+2,̃κ+2

]1/2 (A.2)

where on the r.h.s.

R[λµ,L]3
κ̃,K+ =

[
(λ+µ−L+1−κ̃)!!(λ+µ+L+1−κ̃+1)!!(λ+µ+δ−κ̃+1)!

λ!(λ + µ + 1)!(2L + 1)

]1/2

×R
(

1
2K+[L 1] 1

2 κ̃; 1
2µ, 1

2(L − 1)
)

(A.3)

and the notation (3.4) with the concrete valuesσ = 1
2µ and τ = 1

2(L − 1) is used. The
numerator–denominator polynomials (functions) may be expressed in (A.2) as follows:

g̃̃κ,K+ = M(β ′∗) Aβ ′∗

( −d ′′, −e′′, −a′′, −b′′

−c′′

)

= (−1)
∑

s β ′
s M(β ′) Aβ ′

(
a′′, b′′, d ′′, e′′

c′′

)
(A.4)

with the partitions

β ′∗ = [(
1
2 (̃κ − δ − 1)

)(µ−κ̃)/2
, 1

2(K+ − δ − 1)
]

β ′ = [(
1
2(µ − κ̃) + 1

)(K+−δ−1)/2
,
(

1
2(µ − κ̃)

)(̃κ−K+)/2] (A.5)
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Table A1. Polynomials̃g̃κ,K+ for fixed µ and multiplicities6 4.

κ̃ K+ g̃̃κ,K+ κ̃ K+ g̃̃κ,K+

Multiplicity = 2 (µ − δ − 1 = 2)
µ µ 2−3ω1(λ, L, δ, 1) µ δ + 1 1 (for any multiplicity)

Multiplicity = 3 (µ − δ − 1 = 4)
µ − 2 µ − 2 2−6ω2(λ, L, δ, 1) µ − 2 µ − 4 2−3ω1(λ + 1, L, δ + 1, 1 + 1)

µ µ 2−6ω′
2(λ, L, δ, 1) µ µ − 2 2−3ω1(λ, L, δ, 1)

Multiplicity = 4 (µ − δ − 1 = 6)
µ − 4 µ − 4 2−9ω3(λ, L, δ, 1) µ − 4 µ − 6 2−6ω2(λ + 1, L, δ + 1, 1 + 1)

µ − 2 µ − 2 2−12H4(λ, L, δ, 1) µ − 2 µ − 4 2−9W3(λ, L, δ, 1)

µ − 2 µ − 6 2−6ω′
2(λ + 1, L, δ + 1, 1 + 1) µ µ 2−9ω′

3(λ, L, δ, 1)

µ µ − 2 2−6ω′
2(λ, L, δ, 1) µ µ − 4 2−3ω1(λ, L, δ, 1)

Here
ω1(λ, L, δ, 1) = (λ − δ + 2)(2)(21 + 1) + (λ + 1 − L + 2)(λ + 1 + L + 3)(2δ + 1)

ω2(λ, L, δ, 1) = (λ − δ + 4)(4)(21 + 3)(2;2)

+2(λ − δ + 2)(2)(21 + 1)(λ + 1 − L + 4)(λ + 1 + L + 5)(2δ + 1)

+(λ + 1 − L + 4)(2;2)(λ + 1 + L + 5)(2;2)(2δ + 3)(2;2)

ω′
2(λ, L, δ, 1) = (λ − δ + 2)(4)(21 + 3)(2;2)

+2(λ − δ + 2)(2)(21 + 3)(λ + 1 − L + 2)(λ + 1 + L + 3)(2δ + 3)

+(λ + 1 − L + 4)(2;2)(λ + 1 + L + 5)(2;2)(2δ + 3)(2;2)

ω3(λ, L, δ, 1) = (λ − δ + 6)(6)(21 + 5)(3;2)

+3(λ − δ + 4)(4)(21 + 3)(2;2)(λ + 1 − L + 6)(λ + 1 + L + 7)(2δ + 1)

+3(λ − δ + 2)(2)(21 + 1)(λ + 1 − L + 6)(2;2)(λ + 1 + L + 7)(2;2)(2δ + 3)(2;2)

+(λ + 1 − L + 6)(3;2)(λ + 1 + L + 7)(3;2)(2δ + 5)(3;2)

ω′
3(λ, L, δ, 1) = (λ − δ + 2)(6)(21 + 5)(3;2)

+3(λ − δ + 2)(4)(21 + 5)(2;2)(λ + 1 − L + 2)(λ + 1 + L + 3)(2δ + 5)

+3(λ − δ + 2)(2)(21 + 5)(λ + 1 − L + 4)(2;2)(λ + 1 + L + 5)(2;2)(2δ + 5)(2;2)

+(λ + 1 − L + 6)(3;2)(λ + 1 + L + 7)(3;2)(2δ + 5)(3;2)

H4(λ, L, δ, 1) = (λ − δ + 4)(6)(λ − δ + 2)(2)(21 + 5)(3;2)(21 + 3)

+4(λ − δ + 4)(6)(21 + 5)(3;2)(λ + 1 − L + 4)(λ + 1 + L + 5)(2δ + 3)

+3(λ − δ + 4)(4)(21 + 5)(2;2)(λ + 1 − L + 4)(2;2)(λ + 1 + L + 5)(2;2)(2δ + 5)(2;2)

+3(λ − δ + 2)(4)(21 + 3)(2;2)(λ + 1 − L + 6)(2;2)(λ + 1 + L + 7)(2;2)(2δ + 3)(2;2)

+4(λ − δ + 2)(2)(21 + 3)(λ + 1 − L + 6)(3;2)(λ + 1 + L + 7)(3;2)(2δ + 5)(3;2)

+(λ + 1 − L + 6)(3;2)(λ + 1 − L + 4)(λ + 1 + L + 7)(3;2)(λ + 1 + L + 5)

×(2δ + 5)(3;2)(2δ + 3)

W3(λ, L, δ, 1) = (λ − δ + 4)(6)(21 + 5)(3;2)

+ 3
2(λ − δ + 4)(4)(21 + 5)(2;4)(λ + 1 − L + 4)(λ + 1 + L + 5)(2δ + 5)

+ 3
2(λ − δ + 2)(4)(21 + 5)(2;4)(λ + 1 − L + 4)(λ + 1 + L + 5)(2δ + 1)

+ 3
2(λ − δ + 2)(2)(21 + 1)(λ + 1 − L + 6)(2;2)(λ + 1 + L + 7)(2;2)(2δ + 5)(2;4)

+ 3
2(λ − δ + 2)(2)(21 + 5)(λ + 1 − L + 4)(2;2)(λ + 1 + L + 5)(2;2)(2δ + 5)(2;4)

+(λ + 1 − L + 6)(3;2)(λ + 1 + L + 7)(3;2)(2δ + 5)(3;2)

with X(n;k) = X(X − k)(X − 2k) · · · (X − nk + k) andX(n) = X(n;1).

and parameters

a′′ = 1
2(λ + 1 − δ + 1) b′′ = 1

2(λ − 1 − δ + 2)

c′′ = − 1
2(2λ + µ − κ̃) − 2 d ′′ = 1

2(λ + L − 1 + 2)

e′′ = 1
2(λ − L − 1 + 1).

(A.6)
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In particular,̃gδ+1,δ+1 = 1, and for fixedµ−δ−1, g̃µ,δ+1 = g̃µ+2,µ+2 = 1. The concrete
expressions of non-trivial polynomials̃g̃κ,K+ for multiplicities 6 4 are presented in table 1.
Invariance under the substitution1 ↔ 1−1 allowed us to eliminate the explicit dependence
of g̃̃κ,K+ on 1.

References
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[21] Ali šauskas S and Norvaišas E 1979Liet. Fiz. Rinkinys19 623 (Sov. Phys.–Coll. Lit. Fiz. Sb.19 (5) 1)
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